samples/tapi/hog.cpp


#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <iomanip>
#include <stdexcept>
using namespace std ;
using namespace cv ;
class App
{
public :
App( CommandLineParser & cmd);
void run();
void handleKey( char key);
void hogWorkBegin();
void hogWorkEnd();
string hogWorkFps() const ;
void workBegin();
void workEnd();
string workFps() const ;
private :
App operator=(App&);
//Args args;
bool running;
bool make_gray;
double scale ;
double resize_scale;
int win_width;
int win_stride_width, win_stride_height;
int gr_threshold;
int nlevels;
double hit_threshold;
bool gamma_corr;
int64 hog_work_begin;
double hog_work_fps;
int64 work_begin;
double work_fps;
string img_source;
string vdo_source;
string output;
int camera_id;
bool write_once;
};
int main( int argc, char ** argv)
{
const char * keys =
"{ h help | | print help message }"
"{ i input | | specify input image}"
"{ c camera | -1 | enable camera capturing }"
"{ v video | vtest.avi | use video as input }"
"{ g gray | | convert image to gray one or not}"
"{ s scale | 1.0 | resize the image before detect}"
"{ o output | output.avi | specify output path when input is images}" ;
CommandLineParser cmd(argc, argv, keys);
if (cmd. has ( "help" ))
{
return EXIT_SUCCESS;
}
App app(cmd);
try
{
app.run();
}
catch ( const Exception & e)
{
return cout << "error: " << e. what () << endl, 1;
}
catch ( const exception& e)
{
return cout << "error: " << e.what() << endl, 1;
}
catch (...)
{
return cout << "unknown exception" << endl, 1;
}
return EXIT_SUCCESS;
}
App::App( CommandLineParser & cmd)
{
cout << "\nControls:\n"
<< "\tESC - exit\n"
<< "\tm - change mode GPU <-> CPU\n"
<< "\tg - convert image to gray or not\n"
<< "\to - save output image once, or switch on/off video save\n"
<< "\t1/q - increase/decrease HOG scale\n"
<< "\t2/w - increase/decrease levels count\n"
<< "\t3/e - increase/decrease HOG group threshold\n"
<< "\t4/r - increase/decrease hit threshold\n"
<< endl;
make_gray = cmd. has ( "gray" );
resize_scale = cmd. get < double >( "s" );
vdo_source = samples::findFileOrKeep (cmd. get < string >( "v" ));
img_source = cmd. get < string >( "i" );
output = cmd. get < string >( "o" );
camera_id = cmd. get < int >( "c" );
win_width = 48;
win_stride_width = 8;
win_stride_height = 8;
gr_threshold = 8;
nlevels = 13;
hit_threshold = 1.4;
scale = 1.05;
gamma_corr = true ;
write_once = false ;
cout << "Group threshold: " << gr_threshold << endl;
cout << "Levels number: " << nlevels << endl;
cout << "Win width: " << win_width << endl;
cout << "Win stride: (" << win_stride_width << ", " << win_stride_height << ")\n" ;
cout << "Hit threshold: " << hit_threshold << endl;
cout << "Gamma correction: " << gamma_corr << endl;
cout << endl;
}
void App::run()
{
running = true ;
VideoWriter video_writer;
Size win_size(win_width, win_width * 2);
Size win_stride(win_stride_width, win_stride_height);
// Create HOG descriptors and detectors here
HOGDescriptor hog(win_size, Size (16, 16), Size (8, 8), Size (8, 8), 9, 1, -1,
HOGDescriptor::L2Hys, 0.2, gamma_corr, cv::HOGDescriptor::DEFAULT_NLEVELS );
hog. setSVMDetector ( HOGDescriptor::getDaimlerPeopleDetector() );
while (running)
{
UMat frame;
if (vdo_source!= "" )
{
vc. open (vdo_source.c_str());
if (!vc. isOpened ())
throw runtime_error( string ( "can't open video file: " + vdo_source));
vc >> frame;
}
else if (camera_id != -1)
{
vc. open (camera_id);
if (!vc. isOpened ())
{
stringstream msg;
msg << "can't open camera: " << camera_id;
throw runtime_error(msg.str());
}
vc >> frame;
}
else
{
imread (img_source). copyTo (frame);
if (frame. empty ())
throw runtime_error( string ( "can't open image file: " + img_source));
}
UMat img_aux, img, img_to_show;
// Iterate over all frames
while (running && !frame. empty ())
{
workBegin();
// Change format of the image
if (make_gray) cvtColor (frame, img_aux, COLOR_BGR2GRAY );
else frame. copyTo (img_aux);
// Resize image
if ( abs ( scale -1.0)>0.001)
{
Size sz(( int )(( double )img_aux. cols /resize_scale), ( int )(( double )img_aux. rows /resize_scale));
resize (img_aux, img, sz, 0, 0, INTER_LINEAR_EXACT );
}
else img = img_aux;
img. copyTo (img_to_show);
hog. nlevels = nlevels;
vector<Rect> found;
// Perform HOG classification
hogWorkBegin();
hog. detectMultiScale (img, found, hit_threshold, win_stride,
Size (0, 0), scale , gr_threshold);
hogWorkEnd();
// Draw positive classified windows
for ( size_t i = 0; i < found.size(); i++)
{
rectangle (img_to_show, found[i], Scalar (0, 255, 0), 3);
}
putText (img_to_show, ocl::useOpenCL () ? "Mode: OpenCL" : "Mode: CPU" , Point (5, 25), FONT_HERSHEY_SIMPLEX , 1., Scalar (255, 100, 0), 2);
putText (img_to_show, "FPS (HOG only): " + hogWorkFps(), Point (5, 65), FONT_HERSHEY_SIMPLEX , 1., Scalar (255, 100, 0), 2);
putText (img_to_show, "FPS (total): " + workFps(), Point (5, 105), FONT_HERSHEY_SIMPLEX , 1., Scalar (255, 100, 0), 2);
imshow ( "opencv_hog" , img_to_show);
if (vdo_source!= "" || camera_id!=-1) vc >> frame;
workEnd();
if (output!= "" && write_once)
{
if (img_source!= "" ) // write image
{
write_once = false ;
imwrite (output, img_to_show);
}
else //write video
{
if (!video_writer. isOpened ())
{
video_writer. open (output, VideoWriter::fourcc( 'x' , 'v' , 'i' , 'd' ), 24,
img_to_show. size (), true );
if (!video_writer. isOpened ())
throw std::runtime_error( "can't create video writer" );
}
if (make_gray) cvtColor (img_to_show, img, COLOR_GRAY2BGR );
else cvtColor (img_to_show, img, COLOR_BGRA2BGR );
video_writer << img;
}
}
handleKey(( char ) waitKey (3));
}
}
}
void App::handleKey( char key)
{
switch (key)
{
case 27:
running = false ;
break ;
case 'm' :
case 'M' :
cout << "Switched to " << ( ocl::useOpenCL () ? "OpenCL enabled" : "CPU" ) << " mode\n" ;
break ;
case 'g' :
case 'G' :
make_gray = !make_gray;
cout << "Convert image to gray: " << (make_gray ? "YES" : "NO" ) << endl;
break ;
case '1' :
scale *= 1.05;
cout << "Scale: " << scale << endl;
break ;
case 'q' :
case 'Q' :
scale /= 1.05;
cout << "Scale: " << scale << endl;
break ;
case '2' :
nlevels++;
cout << "Levels number: " << nlevels << endl;
break ;
case 'w' :
case 'W' :
nlevels = max (nlevels - 1, 1);
cout << "Levels number: " << nlevels << endl;
break ;
case '3' :
gr_threshold++;
cout << "Group threshold: " << gr_threshold << endl;
break ;
case 'e' :
case 'E' :
gr_threshold = max (0, gr_threshold - 1);
cout << "Group threshold: " << gr_threshold << endl;
break ;
case '4' :
hit_threshold+=0.25;
cout << "Hit threshold: " << hit_threshold << endl;
break ;
case 'r' :
case 'R' :
hit_threshold = max (0.0, hit_threshold - 0.25);
cout << "Hit threshold: " << hit_threshold << endl;
break ;
case 'c' :
case 'C' :
gamma_corr = !gamma_corr;
cout << "Gamma correction: " << gamma_corr << endl;
break ;
case 'o' :
case 'O' :
write_once = !write_once;
break ;
}
}
inline void App::hogWorkBegin()
{
hog_work_begin = getTickCount ();
}
inline void App::hogWorkEnd()
{
int64 delta = getTickCount () - hog_work_begin;
double freq = getTickFrequency ();
hog_work_fps = freq / delta;
}
inline string App::hogWorkFps() const
{
stringstream ss;
ss << hog_work_fps;
return ss.str();
}
inline void App::workBegin()
{
work_begin = getTickCount ();
}
inline void App::workEnd()
{
int64 delta = getTickCount () - work_begin;
double freq = getTickFrequency ();
work_fps = freq / delta;
}
inline string App::workFps() const
{
stringstream ss;
ss << work_fps;
return ss.str();
}