扩展图像处理


模块

Structured forests for fast edge detection
EdgeBoxes
过滤器
Superpixels
Image segmentation
Fast line detector
Fourier descriptors
Binary morphology on run-length encoded image

函数

void cv::ximgproc::anisotropicDiffusion ( InputArray src, OutputArray dst, float alpha, float K, int niters)
Performs anisotropic diffusian on an image. 更多...
void cv::ximgproc::edgePreservingFilter ( InputArray src, OutputArray dst, int d, double threshold )
Smoothes an image using the Edge-Preserving filter. 更多...
void cv::ximgproc::niBlackThreshold ( InputArray _src, OutputArray _dst, double maxValue, int type, int blockSize, double k, int binarizationMethod= BINARIZATION_NIBLACK )
Performs thresholding on input images using Niblack's technique or some of the popular variations it inspired. 更多...
Matx23d cv::ximgproc::PeiLinNormalization ( InputArray I)
Calculates an affine transformation that normalize given image using Pei&Lin Normalization. 更多...
void cv::ximgproc::PeiLinNormalization ( InputArray I, OutputArray T)
void cv::ximgproc::thinning ( InputArray src, OutputArray dst, int thinningType= THINNING_ZHANGSUEN )
Applies a binary blob thinning operation, to achieve a skeletization of the input image. 更多...

详细描述

函数文档编制

anisotropicDiffusion()

void cv::ximgproc::anisotropicDiffusion ( InputArray src ,
OutputArray dst ,
float alpha ,
float K ,
int niters
)
Python:
dst = cv.ximgproc.anisotropicDiffusion( src, alpha, K, niters[, dst] )

#include < opencv2/ximgproc.hpp >

Performs anisotropic diffusian on an image.

The function applies Perona-Malik anisotropic diffusion to an image. This is the solution to the partial differential equation:

\[{\frac {\partial I}{\partial t}}={\mathrm {div}}\left(c(x,y,t)\nabla I\right)=\nabla c\cdot \nabla I+c(x,y,t)\Delta I\]

Suggested functions for c(x,y,t) are:

\[c\left(\|\nabla I\|\right)=e^{{-\left(\|\nabla I\|/K\right)^{2}}}\]

\[ c\left(\|\nabla I\|\right)={\frac {1}{1+\left({\frac {\|\nabla I\|}{K}}\right)^{2}}} \]

Parameters
src Source image with 3 channels.
dst Destination image of the same size and the same number of channels as src .
alpha The amount of time to step forward by on each iteration (normally, it's between 0 and 1).
K sensitivity to the edges
niters The number of iterations

edgePreservingFilter()

void cv::ximgproc::edgePreservingFilter ( InputArray src ,
OutputArray dst ,
int d ,
double threshold
)
Python:
dst = cv.ximgproc.edgePreservingFilter( src, d, threshold[, dst] )

#include < opencv2/ximgproc/edgepreserving_filter.hpp >

Smoothes an image using the Edge-Preserving filter.

The function smoothes Gaussian noise as well as salt & pepper noise. For more details about this implementation, please see [ReiWoe18] Reich, S. and Wörgötter, F. and Dellen, B. (2018). A Real-Time Edge-Preserving Denoising Filter. Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP): Visapp, 85-94, 4. DOI: 10.5220/0006509000850094.

Parameters
src Source 8-bit 3-channel image.
dst Destination image of the same size and type as src.
d Diameter of each pixel neighborhood that is used during filtering. Must be greater or equal 3.
threshold Threshold, which distinguishes between noise, outliers, and data.

niBlackThreshold()

void cv::ximgproc::niBlackThreshold ( InputArray _src ,
OutputArray _dst ,
double maxValue ,
int type ,
int blockSize ,
double k ,
int binarizationMethod = BINARIZATION_NIBLACK
)
Python:
_dst = cv.ximgproc.niBlackThreshold( _src, maxValue, type, blockSize, k[, _dst[, binarizationMethod]] )

#include < opencv2/ximgproc.hpp >

Performs thresholding on input images using Niblack's technique or some of the popular variations it inspired.

The function transforms a grayscale image to a binary image according to the formulae:

  • THRESH_BINARY

    \[dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\]

  • THRESH_BINARY_INV

    \[dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\]

    where \(T(x,y)\) is a threshold calculated individually for each pixel.

The threshold value \(T(x, y)\) is determined based on the binarization method chosen. For classic Niblack, it is the mean minus \( k \) times standard deviation of \(\texttt{blockSize} \times\texttt{blockSize}\) neighborhood of \((x, y)\).

The function can't process the image in-place.

Parameters
_src Source 8-bit single-channel image.
_dst Destination image of the same size and the same type as src.
maxValue Non-zero value assigned to the pixels for which the condition is satisfied, used with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.
type Thresholding type, see cv::ThresholdTypes .
blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the pixel: 3, 5, 7, and so on.
k The user-adjustable parameter used by Niblack and inspired techniques. For Niblack, this is normally a value between 0 and 1 that is multiplied with the standard deviation and subtracted from the mean.
binarizationMethod Binarization method to use. By default, Niblack's technique is used. Other techniques can be specified, see cv::ximgproc::LocalBinarizationMethods .
另请参阅
threshold , adaptiveThreshold

PeiLinNormalization() [1/2]

Matx23d cv::ximgproc::PeiLinNormalization ( InputArray I )
Python:
T = cv.ximgproc.PeiLinNormalization( I[, T] )

#include < opencv2/ximgproc/peilin.hpp >

Calculates an affine transformation that normalize given image using Pei&Lin Normalization.

Assume given image \(I=T(\bar{I})\) where \(\bar{I}\) is a normalized image and \(T\) is an affine transformation distorting this image by translation, rotation, scaling and skew. The function returns an affine transformation matrix corresponding to the transformation \(T^{-1}\) described in [PeiLin95]. For more details about this implementation, please see [PeiLin95] Soo-Chang Pei and Chao-Nan Lin. Image normalization for pattern recognition. Image and Vision Computing, Vol. 13, N.10, pp. 711-723, 1995.

Parameters
I Given transformed image.
返回
Transformation matrix corresponding to inversed image transformation

PeiLinNormalization() [2/2]

void cv::ximgproc::PeiLinNormalization ( InputArray I ,
OutputArray T
)
Python:
T = cv.ximgproc.PeiLinNormalization( I[, T] )

#include < opencv2/ximgproc/peilin.hpp >

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

thinning()

void cv::ximgproc::thinning ( InputArray src ,
OutputArray dst ,
int thinningType = THINNING_ZHANGSUEN
)
Python:
dst = cv.ximgproc.thinning( src[, dst[, thinningType]] )

#include < opencv2/ximgproc.hpp >

Applies a binary blob thinning operation, to achieve a skeletization of the input image.

The function transforms a binary blob image into a skeletized form using the technique of Zhang-Suen.

Parameters
src Source 8-bit single-channel image, containing binary blobs, with blobs having 255 pixel values.
dst Destination image of the same size and the same type as src. The function can work in-place.
thinningType Value that defines which thinning algorithm should be used. See cv::ximgproc::ThinningTypes